International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Kozlov, G. V., Volkov, A. A., Scott, J. F. \& Feldkamp, G. E. (1983). Phys. Rev. B, 28, 255-261.

López-Echarri, A. \& Tello, M. J. (1981). J. Phys. D, 14, 71-77.
Makita, Y. (1965). J. Phys. Soc. Jpn, 20, 2073-2080.

Pepinsky, R. \& Makita, Y. (1962). Bull. Am. Phys. Soc. Ser. II, 7, 241.

Prokhorova, S. D., Smolensky, G. A., Siny, I. G., Kuzminov, E. G., Mikvabia, V. D. \& Arndt, H. (1980). Ferroelectrics, 25, 629-632.
Sakurai, T. (1967). Editor. Universal Crystallographic Computation Program System. The Crystallographic Society of Japan, Tokyo.

Acta Cryst. (1984). C40, 1827-1829

Structure of Tribromotris(pyridine)thallium(III), $\left[\mathrm{TlBr}_{3}\left(\mathrm{C}_{\mathbf{5}} \mathbf{H}_{\mathbf{5}} \mathrm{N}\right)_{3}\right]$

By S. E. Jeffs, R. W. H. Small and I. J. Worrall
Department of Chemistry, The University, Lancaster, England

(Received 11 April 1984; accepted 18 July 1984)

Abstract

M_{r}=681.4\), orthorhombic, $P 2_{1} 2_{1}{ }_{1}{ }_{1}, a=$ 13.39 (1),$\quad b=15.60$ (2), $\quad c=8.840$ (5) $\AA, \quad V=$ $1846.5 \AA^{3}, Z=4, \quad D_{x}=2.450, \quad D_{m}=2.56 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.7106 \AA, \quad \mu=1.48 \mathrm{~mm}^{-1}, \quad F(000)=$ 1248, room temperature. Final $R=0.050$ for 2064 unique observed reflections. The crystal structure consists of neutral molecules of $\mathrm{TlBr}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}$; the configuration around the Tl is a distorted octahedron with mer geometry. The trans bonds show deviations from linearity within a range of $7-10^{\circ}$; intermolecular effects involving the pyridines are considered to be important in attributing the deviations of the N from regular octahedral sites.

Introduction. The Group III halides $\mathrm{InBr}_{3}, \mathrm{InCl}_{3}$ and TlCl_{3} react with excess pyridine to form complexes of stoichiometry $M X_{3} \cdot 4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (Small \& Worrall, 1982; Jeffs, Small \& Worrall, 1984c) which contain $M X_{3} \cdot 3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ molecules with mer geometry and an additional pyridine solvate molecule. Under similar conditions TlBr_{3} forms only the $3: 1$ complex. For $M X_{3}$ octahedral complexes there are two possible isomers and we have determined the crystal structure of the title compound to see if the other isomer (fac) might occur in the absence of the extra solvate molecule.

Experimental. Title compound prepared by adding excess dry pyridine to a solution of Tl^{111} bromide in acetonitrile. Suitable crystals obtained by recrystallizing from pyridine were transferred to Lindemann tubes in a nitrogen-filled dry box. Crystal data obtained from Weissenberg photographs with $\mathrm{Cu} K \alpha$ radiation (λ $=1.542 \AA) ; D_{m}$ measured by flotation in benzene/ methylene dibromide solutions. Intensity measurements made on a Stoe STADI-2 two-circle automatic diffractometer with graphite-monochromatized Mo Ka
radiation; layers $l=0-9$ measured; $2 \theta<50^{\circ}$; crystal size $0.19 \times 0.18 \times 0.40 \mathrm{~mm}$. Absorption corrections (max., min. values $0.06,0.02$) and scaling of data carried out with SHELX76 (Sheldrick, 1976). 2461 reflections measured; elimination of those with $I<$ $3 \sigma(I)$ gave 2064 unique reflections. Standards measured every ten reflections: variation 1%. Same programs used for all other calculations. Tl -atom positions, obtained from Patterson maps, used to phase ($F_{o}-F_{c}$) maps to give positions of remaining atoms (apart from H). Full-matrix least-squares refinement (on F) of all atomic positions, anisotropic $U_{i j}$ values for Tl and Br , isotropic U values for remaining non- H atoms, convergence at $R=0.050 ; \quad w R=0.056, w=0.2962 /$ $\left[\sigma^{2}\left(F_{o}\right)+0.017182 F_{o}{ }^{2}\right]$. The enantiomorph was also refined and increased R slightly. $(\Delta / \sigma)_{\text {max }} 0.215$; max. in final difference Fourier map $1.97 \mathrm{e} \AA^{-3}$ (associated mainly with TI). No correction applied for secondary extinction. Atomic scattering factors those of Cromer \& Mann (1968) and Cromer \& Liberman (1970).

Discussion. Final coordinates and equivalent isotropic thermal parameters (U_{eq}) for Tl and Br , and isotropic thermal parameters for C and N are given in Table 1.* The crystal structure contains 'octahedral' neutral molecules $\mathrm{TlBr}_{3} \cdot 3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ with mer (trans) geometry (Fig. 1) and is similar to that of $\mathrm{TlCl}_{3} \cdot 3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ found in $\mathrm{TICl}_{3} .4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (Jeffs et al., 1984c) but lacks the twofold rotation axis present in that structure. Selected bond distances and angles are listed in Table 2. It is seen that

[^0]© 1984 International Union of Crystallography

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$, equivalent isotropic thermal parameters for Tl and Br and isotropic thermal parameters for C and $\mathrm{N}\left(\times 10^{4}\right)$

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	$U_{\mathrm{eq}} / U\left(\AA^{2}\right)$
	$897(1)$	$1553(1)$	$1689(1)$	$301(3)$
Tl	$1435(1)$	$30(1)$	$744(3)$	$466(8)$
$\mathrm{Br}(1)$	$102(1)$	$3047(1)$	$2335(2)$	$429(8)$
$\mathrm{Br}(2)$	$2734(1)$	$1930(1)$	$2658(2)$	$439(8)$
$\mathrm{Br}(3)$	$395(9)$	$1005(8)$	$4142(17)$	$327(26)$
$\mathrm{N}(1)$	$1188(11)$	$2132(9)$	$-882(21)$	$437(33)$
$\mathrm{N}(2)$	$-831(10)$	$1033(8)$	$1065(18)$	$378(28)$
$\mathrm{N}(3)$	$932(14)$	$356(11)$	$4741(22)$	$448(37)$
$\mathrm{C}(1)$	$753(18)$	$51(15)$	$6161(33)$	$620(55)$
$\mathrm{C}(2)$	$-29(15)$	$452(13)$	$7009(25)$	$497(44)$
$\mathrm{C}(3)$	$-558(15)$	$1142(13)$	$6355(24)$	$487(43)$
$\mathrm{C}(4)$	$-353(12)$	$1371(9)$	$4928(22)$	$353(32)$
$\mathrm{C}(5)$	$635(13)$	$2731(11)$	$-1527(23)$	$413(36)$
$\mathrm{C}(6)$	$776(17)$	$3037(14)$	$-2888(28)$	$592(52)$
$\mathrm{C}(7)$	$2563(16)$	$2736(14)$	$-3741(28)$	$540(48)$
$\mathrm{C}(8)$	$2194(15)$	$2083(12)$	$-3057(25)$	$474(42)$
$\mathrm{C}(9)$	$1931(14)$	$1794(11)$	$-1630(25)$	$466(39)$
$\mathrm{C}(10)$	$-1481(12)$	$1488(10)$	$273(21)$	$371(33)$
$\mathrm{C}(11)$	$-2415(13)$	$1182(12)$	$-170(24)$	$436(38)$
$\mathrm{C}(12)$	$-2642(15)$	$356(13)$	$139(26)$	$515(4)$
$\mathrm{C}(13)$	$-1948(15)$	$-136(12)$	$1031(28)$	$483(42)$
$\mathrm{C}(14)$	$-1037(12)$	$250(10)$	$1422(21)$	$391(35)$
$\mathrm{C}(15)$				

Table 2. Important bond distances (\AA) and angles (${ }^{\circ}$) for $\mathrm{TlBr}_{3} .3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$

$\mathrm{Tl}-\mathrm{Br}(1)$	2.618 (2)	$\mathrm{Tl}-\mathrm{Br}(2)$	2.626 (2)
$\mathrm{Tl}-\mathrm{Br}(3)$	2.670 (2)	$\mathrm{Tl}-\mathrm{N}(1)$	2.425 (14)
T - N (2)	2.477 (18)	$\mathrm{Tl}-\mathrm{N}(3)$	2.514 (14)
Mean $\mathrm{C}-\mathrm{N}$	1.32 (2)	Mean C-C	1.39 (1)
$\mathrm{Br}(1)-\mathrm{Tl}-\mathrm{Br}(2)$	170.5 (1)	$\mathrm{N}(2)-\mathrm{Tl}-\mathrm{Br}(3)$	94.0 (4)
$\mathrm{Br}(1)-\mathrm{Tl}-\mathrm{Br}(3)$	92.8 (1)	$\mathrm{N}(3)-\mathrm{Tl}-\mathrm{Br}(1)$	83.7 (3)
$\mathrm{Br}(2)-\mathrm{Tl}-\mathrm{Br}(3)$	96.2 (1)	$\mathrm{N}(3)-\mathrm{Tl}-\mathrm{Br}(2)$	87.8 (3)
$\mathrm{N}(1)-\mathrm{Tl}-\mathrm{Br}(1)$	92.4 (3)	$\mathrm{N}(3)-\mathrm{Tl}-\mathrm{Br}(3)$	171.7 (3)
$\mathrm{N}(1)-\mathrm{Tl}-\mathrm{Br}(2)$	90.3 (3)	$\mathrm{N}(2)-\mathrm{Tl}-\mathrm{N}(1)$	173.0 (4)
$\mathrm{N}(1)-\mathrm{Tl}-\mathrm{Br}(3)$	92.6 (3)	$\mathrm{N}(1)-\mathrm{Tl}-\mathrm{N}(3)$	80.1 (5)
$\mathrm{N}(2)-\mathrm{Tl}-\mathrm{Br}(1)$	89.7 (4)	$\mathrm{N}(2)-\mathrm{Tl}-\mathrm{N}(3)$	93.5 (5)
$\mathrm{N}(2)-\mathrm{Tl}-\mathrm{Br}(2)$	86.5 (4)		

Fig. 1. Molecular structure of $\mathrm{TlBr}_{3} \cdot 3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$.
there is a considerable distortion in the trans bond angles, $170.5(1)-173.0(4)^{\circ}$; these values are considerably less than those observed in the analogous mer pyridine complexes of $\operatorname{InBr}_{3}\left[175(1)-178(1)^{\circ}\right.$; Small \& Worrall, 1982], $\mathrm{InCl}_{3}\left[175 \cdot 1(2)-180^{\circ}\right]$ and TlCl_{3} [174.2 (1)-180 ${ }^{\circ}$; Jeffs et al., 1984c]. The close intermolecular contacts shown in Fig. 2 can be used to account for the displacement of N atoms from regular octahedral sites but there is no explanation in terms of intermolecular effects of the displacement of Br atoms from regular octahedral sites. In the title compound, however, the planes of the trans pyridine ligands are parallel [plane angle $4(3)^{\circ}$] and these planes are at 30° to the $\mathrm{Tl}-\mathrm{Br}(1)$ and $\mathrm{Tl}-\mathrm{Br}(2)$ directions and $60(3)^{\circ}$ to the $\mathrm{Tl}-\mathrm{N}(3)$ and $\mathrm{Tl}-\mathrm{Br}(3)$ directions. In the analogous molecules the planes of the trans pyridines are at 90° and these lie at 45° to the $M-X$ and $M-\mathrm{N}$ directions. These comparisons are not ideal, however, since the latter have an additional solvate molecule within the unit cell and its packing may affect the bond angles.

The $\mathrm{Tl}-\mathrm{Br}(3)$ bond distance trans to $\mathrm{N}(3)$ is considerably longer $[2.670(2) \AA\}$ than the other $\mathrm{Tl}-\mathrm{Br}$ distances $[2.618(2), 2.626(2) \AA]$. This effect is not general, since in $\operatorname{InBr} 3.3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ the reverse is observed. As expected the $\mathrm{Tl}-\mathrm{Br}$ distances are larger than those observed in simple compounds which contain fivecoordinate Tl , e.g. TlBr_{3}. dioxane $2 \cdot 498$ (3)-2.509 (2) \AA (Jeffs, Small \& Worrall, 1983); $\mathrm{TlBr}_{3} .2 \mathrm{OPPh}_{3}$ 2.497 (3)-2.515 (2) \AA (Jeffs, Small \& Worrall, 1984b). The $\mathrm{Tl}-\mathrm{Br}$ distance in $\mathrm{TlBr}_{3} .2$ pyridine [2.5182.557 (9) A (Jeffs, Small \& Worrall, 1984a)] lies

Fig. 2. Close intermolecular contacts within the unit cell (e.s.d.'s: $\mathrm{C}-\operatorname{Br} 0.015, \mathrm{C}-\mathrm{N} 0.025$ and $\mathrm{C}-\mathrm{C} 0.030 \AA$).
between five- and six-coordinate values and this may be attributed to weak dimer association. The $\mathrm{Tl}-\mathrm{N}$ distances in the title compound [2.42 (1)-2.51 (1) \AA] are similar to those in TlCl_{3}.3pyridine $[2.38$ (1)2.48 (1) \AA] suggesting similar bond strengths in the two environments.

References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Jeffs, S. E., Small, R. W. H. \& Worrall, I. J. (1983). Acta Cryst. C 39, 1628-1630.
Jeffs, S. E., Small, R. W. H. \& Worrall, I. J. (1984a). Acta Cryst. C40, 65-67.
Jeffs, S. E., Small, R. W. H. \& Worrall, I. J. (1984b). Acta Cryst. C40, 381-383.
Jeffs, S. E., Small, R. W. H. \& Worrall, I. J. (1984c). Acta Cryst. C40, 1329-1331.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Small, R. W. H. \& Worrall, I. J. (1982). Acta Cryst. B38, 932-934.

Structure of Ammonium Tris(oxalato)gallate(III) Trihydrate, (I) $\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{Ga}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, and Ammonium Tris(oxalato)aluminate(III) Trihydrate, (II) $\left(\mathbf{N H}_{4}\right)_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathbf{O}_{4}\right)_{3}\right] \cdot \mathbf{3 H} \mathbf{2} \mathbf{O}$

By N. Bulc, L. Golič and J. Šiftar
Chemistry Department, University E. Kardelj, 61000 Ljubljana, Yugoslavia

(Received 30 April 1984; accepted 22 June 1984)

Abstract

I), $M_{r}=441.94$, triclinic, $P \overline{1}, a=7.901$ (1), $b=10.674$ (2), $c=10.710$ (2) $\AA, \alpha=83.14$ (1), $\beta=$ $70.18(1), \quad \gamma=69.88(1)^{\circ}, \quad V=798.0 \AA^{3}, \quad Z=2, D_{x}$ $=1.839, D_{m}=1.823 \mathrm{Mg} \mathrm{m}^{-3}$ (by flotation), $\lambda($ Mo $K \alpha)$ $=0.71069 \mathrm{~A}, \quad \mu=1.798 \mathrm{~mm}^{-1}, \quad F(000)=452, \quad T=$ 293 (1) K, final $R=0.047$ for 3326 observed reflections; isomorphous to (II), $M_{r}=399 \cdot 20$, triclinic, $P \overline{1}$, $a=7.888$ (4), $b=10.667$ (4), $c=10.643$ (2) $\AA, \quad \alpha=$ 83.33 (2), $\quad \beta=70.44$ (2),$\quad \gamma=69.10$ (4) ${ }^{\circ}, \quad V=$ $788.3 \AA^{3}, Z=2, D_{x}=1.682, D_{m}=1.664 \mathrm{Mg} \mathrm{m}^{-3}$ (by flotation), $\lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=0.206 \mathrm{~mm}^{-1}$, $F(000)=416, T=293(1) \mathrm{K}$, final $R=0.047$ for 3210 observed reflections. The Ga and the Al atoms are six-coordinated by O atoms from the bidentate oxalate groups in the form of a distorted octahedron. The average $\mathrm{Ga}-\mathrm{O}$ bond distance is 1.97 (1) \AA and $\mathrm{Al}-\mathrm{O}$ 1.90 (1) \AA. The coordination octahedra are linked together by hydrogen bonds.

Introduction. The structure determinations of the title compounds were undertaken as part of studies of M^{III} oxalate complexes (van Niekerk \& Schoening, 1952a,b; Bulc, Golič \& Šiftar, 1982, 1983).

Experimental. (I) prepared from freshly precipitated gallium hydroxide, aqueous solution of oxalic acid and ammonium oxalate ($1: 1 \cdot 5: 1 \cdot 5$); crystallization effected by addition of absolute ethanol. (II) prepared from aqueous solution of aluminium oxalate and ammonium oxalate (1:3). Crystal size $0.20 \times 0.25 \times 0.28$ (I),
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$ (II), Enraf-Nonius CAD-4 diffractometer, cell dimensions determined by leastsquares refinement from θ values of 54 (I), 64 (II) reflections, range $9<\theta<16$ (I), $10<\theta<15^{\circ}$ (II), graphite-monochromatized Mo $K \alpha_{1}$ radiation, $\lambda=$ $0.70926 \AA$, no absorption correction applied; threedimensional diffractometer data collected with Mo Ka radiation, $\omega-2 \theta$ scan, 2θ scan width $\left({ }^{\circ}\right)=0.8+0.3 \times$ $\tan \theta$, aperture $(\mathrm{mm})=2.4+0.9 \tan \theta$, max. scan time $40 \mathrm{~s}, 2 \theta_{\max } 60^{\circ}$, full sphere measured, $(\sin \theta / \lambda)_{\text {max }}$ $0 \cdot 7 \AA^{-1}$, standard reflections $053,04 \overline{3}, 15 \overline{1}$ (I), 063 , $06 \overline{1}, 035$ (II); 9434 (I), 9325 (II) measured, 4639 (I), 4567 (II) unique reflections, $R_{\text {int }}\left[\sum(I-|I|) / \sum I\right]=4 \cdot 5 \%$ (I), $2 \cdot 7 \%$ (II), 1313 (I), 1357 (II) unobserved reflections I $I<3.5|4| \sigma(I)$], Patterson and Fourier methods, difference Fourier synthesis to reveal H atoms; full-matrix least-squares refinement with anisotropic thermal parameters for all non- H atoms, H atoms not refined, yielded final $R=0.047$ (I), 0.047 (II), $R_{w}=0.067$ (I), 0.054 (II); empirical weighting function $w=W_{F} \times W_{S}$, where $W_{F}\left(\left|F_{o}\right|<7.0\right)=\left|F_{o}\right| / 7 \cdot 0, W_{F}\left(\left|F_{o}\right|>13.0\right)=$ $13.0 /\left|F_{o}\right|, \quad W_{F}\left(7.0<\left|F_{o}\right|<13.0\right)=1.0 \quad$ and $W_{S}(\sin \theta<0.45)=(\sin \theta / 0.45)^{1.5}, \quad W_{S}(\sin \theta>0.50)=$ $0.50 / \sin \theta, \quad W_{S}(0.45<\sin \theta<0.50)=1.0 \quad$ (I) and $W_{F}\left(\left|F_{o}\right|<2.0\right)=\left(\left|F_{o}\right| / 2.0\right)^{1 \cdot 5}, W_{F}\left(\left|F_{o}\right|>6.0\right)=6.0 /$ $\left|F_{o}\right|, \quad W_{F}\left(2.0<\left|F_{o}\right|<6.0\right)=1.0 \quad$ and $\quad W_{s}(\sin \theta<$ $0.44)=(\sin \theta / 0.44)^{2 \cdot 5}, \quad W_{S}(\sin \theta>0.95)=0.95 / \sin \theta$, $W_{s}(0.44<\sin \theta<0.95)=1.0$ (II) applied in order to keep $\sum w(\Delta F)^{2}$ uniform over the ranges of $(\sin \theta / \lambda)$ and $\left|F_{o}\right|,(\Delta / \sigma)_{\text {max }}$ in final refinement cycle 1.74 (I), 1.13

[^0]: * Lists of structure factors, anisotropic thermal parameters and a complete list of bond lengths and angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39628 (17 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

